
The Extended Selfish Gene
Release 1.0

Giovanni Squillero, Alberto Tonda, Stella Stakiadi

Jan 29, 2021

CONTENTS

1 What is SGX? 3

2 Audience 5

3 Installation 7
3.1 Source Code . 7
3.2 Importance of FOSS . 7

4 Fitness Function 9
4.1 How do we handle a different scenario . 9
4.2 Multi-Objective Evolutionary Algorithm . 9

5 Allele 11
5.1 Base Allele class . 11
5.2 Boolean Allele class . 12
5.3 Categorical Allele class . 12

6 Fitness 15
6.1 Base fitness class . 15
6.2 Fitness Function class . 16
6.3 Multi-Objective class . 16
6.4 Simple class . 17

7 Utils 19
7.1 CPU_time . 19
7.2 Jupyter Support . 19
7.3 Logging . 19
7.4 Random class . 19
7.5 Archive class . 19
7.6 Base class . 20
7.7 Species class . 21

8 SGX Algorithm 23
8.1 Simple Algorithm class . 23

9 Modular Design Rationale 25

10 Authors 27
10.1 Giovanni Squillero . 27
10.2 Alberto Tonda . 27
10.3 Stella Stakiadi . 27

i

11 License 29

12 Acknowledgements 31

13 Appendix - Terms 33

Python Module Index 35

Index 37

ii

The Extended Selfish Gene, Release 1.0

Welcome to Extended Selfish Gene’s documentation!

CONTENTS 1

The Extended Selfish Gene, Release 1.0

2 CONTENTS

CHAPTER

ONE

WHAT IS SGX?

The Selfish Gene optimization algorithm (SG) is a population-less evolutionary algorithm loosely inspired by the
interpretation of the Darwinian theory given by the English biologist Richard Dawkins and popularized as the Selfish
Gene theory. It enables a user to efficiently find the list parameters, either discrete symbols or real numbers, that
maximizes a given target function.

The original SG was an almost straightforward implementation of a though experiment, only able to handle binary val-
ues; it was published in SAC98 as “The selfish gene algorithm: a new evolutionary optimization strategy” (F. Corno,
M.S. Reorda, G. Squillero, 1998) and few month later, with some modifications, in ICEC98 as “A new evolutionary
algorithm inspired by the selfish gene theory” (F. Corno, M.S. Reorda, G. Squillero, 1998). The base algorithm was
later discovered surprisingly similar to the Equilibrium Genetic Algorithm, developed by Ari Juels, Shumeet Baluja,
and Alistair Sinclair in 1993 and never published – see “Lost gems of EC: the equilibrium genetic algorithm and the
role of crossover” (Fernando G. Lobo, 2007). Even more surprisingly, Georges Harik, Fernando Lobo, and David Gol-
berg proposed a quite similar, yet completely unrelated, algorithm in the very same ICEC98: “The Compact Genetic
Algorithm” (G.R. Harik, F.G. Lobo, D.E. Goldberg, 1998). Comprehensive background information on “Estimation
of Distribution Algorithms (EDAs) (Martin Pelikan, Mark W. Hauschild, Fernando G. Lobo, 2015) can be found in an
introduction by Lobo et al.

Since its appearance, the SG was demonstrated more robust than pure hill climbing, reasonably efficient, and quite easy
to implement. It was immediately exploited by practitioners in many real-world applications, CAD problems; and by
scholars for various test benches. Moreover, the SG framework enabled the inclusions of tricks that made it effective in
quite a wider range of situations. The enhanced SG-Clans added to the basic SG a sort of recursive evolution, inspired
by the concept of allopatric speciation, to escape local optima. Results were published in “Optimizing deceptive
functions with the SG-Clans algorithm” (F. Corno, M.S. Reorda, G. Squillero, 1999). Non-binary encodings were
eventually added in 2000s. Indeed, real-valued parameters was never included as they never worked properly, although
a draft paper titled “A population-less evolutionary algorithm for real and integer optimization” mysteriously crawled
its way up to semantic scholar.

Over the years, the algorithm was reimplemented by different researchers in different languages, and a few brand
new approaches derived from it (see Google Scholar’s up-to-date references). In 2016, a comprehensive review was
published on IOPScience “Selfish Gene Algorithm Vs Genetic Algorithm: A Review” (Ariff, Norharyati Md, Khalid,
Noor Elaiza Abdul, Hashim, Rathiah, Noor, Noorhayati Mohamed, 2016).

3

https://doi.org/10.1145/330560.330838
https://doi.org/10.1145/330560.330838
https://ieeexplore.ieee.org/document/700092
https://ieeexplore.ieee.org/document/700092
https://doi.org/10.1145/1329465.1329468
https://doi.org/10.1145/1329465.1329468
https://ieeexplore.ieee.org/document/700083
https://ieeexplore.ieee.org/document/700083
https://link.springer.com/chapter/10.1007/978-3-662-43505-2_45
https://link.springer.com/chapter/10.1007/978-3-662-43505-2_45
https://ieeexplore.ieee.org/document/785547
https://ieeexplore.ieee.org/document/785547
https://iopscience.iop.org/article/10.1088/1757-899X/160/1/012098/pdf
https://iopscience.iop.org/article/10.1088/1757-899X/160/1/012098/pdf

The Extended Selfish Gene, Release 1.0

4 Chapter 1. What is SGX?

CHAPTER

TWO

AUDIENCE

The expected audience for SGX, a ‘Quick n’ Dirty’ numerical optimization, includes computer scientists, engineers
and practitioners.

• This evolutionary algorithm provides a Sub-Optimal result, which is better than a “hill-climbing” algorithm.

• It is a real, industrial application where fitness function is computationally intensive.

• Real-time application.

• SGX also provides an easy-to-use and standard interface.

• The code is parallelizable, which means that it can run in parallel multiple threads. There is no need to wait for
everything to be completed. Some implementations might be Embarrassingly parallel (see https://en.wikipedia.
org/wiki/Embarrassingly_parallel).

• SGX is available as a PyPi package and it can be easily installed using pip.

• The modular design allows scholars to extend SGX for custom application.

5

https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://pypi.org/project/sgx/
https://en.wikipedia.org/wiki/Pip_%28package_manager%29

The Extended Selfish Gene, Release 1.0

6 Chapter 2. Audience

CHAPTER

THREE

INSTALLATION

3.1 Source Code

SGX is available as a PyPi package from https://pypi.org/project/sgx/ and installing it is as simple as

pip install sgx

and then

>>> import sgx

Caveat: on some systems the package manager is pip3.

3.2 Importance of FOSS

Personal control, customizability and freedom:

Users of FOSS benefit from the Four Essential Freedoms to make unrestricted use of, and to study, copy, modify, and
redistribute such software with or without modification. If they would like to change the functionality of software
they can bring about changes to the code and, if they wish, distribute such modified versions of the software or often
depending on the software’s decision making model and its other users even push or request such changes to be made
via updates to the original software.

Privacy and security:

Manufacturers of proprietary, closed-source software are sometimes pressured to building in backdoors or other covert,
undesired features into their software. Instead of having to trust software vendors, users of FOSS can inspect and verify
the source code themselves and can put trust on a community of volunteers and users. As proprietary code is typically
hidden from public view, only the vendors themselves and hackers may be aware of any vulnerabilities in them while
FOSS involves as many people as possible for exposing bugs quickly.

Low costs or no costs:

FOSS is often free of charge although donations are often encouraged. This also allows users to better test and compare
software.

Quality, collaboration and efficiency:

FOSS allows for better collaboration among various parties and individuals with the goal of developing the most effi-
cient software for its users or use-cases while proprietary software is typically meant to generate profits. Furthermore,
in many cases more organizations and individuals contribute to such projects than to proprietary software. It has been
shown that technical superiority is typically the primary reason why companies choose open source software.

7

https://en.wikipedia.org/wiki/Python_Package_Index
https://pypi.org/project/sgx/

The Extended Selfish Gene, Release 1.0

The default branch is always the more stable and the only one tested through Travis CI. The experimental branches
exp/* contain code and comments that some programmers may find disturbing — Viewers discretion advised. Before
trying to contribute read this paper and this style guide. It may be wise to send Giovanni an email [@] before digging
into the project.

8 Chapter 3. Installation

CHAPTER

FOUR

FITNESS FUNCTION

Fitness class also redefines the relational operator in order to handle different types of optimization (eg. maximization,
minimization) and to provide limited support to more complex scenarios (eg. multi-objective optimization).

4.1 How do we handle a different scenario

When subclassing, one’s fitness should only redefine ‘is_fitter’, and optionally ‘is_distinguishable’ and ‘is_dominant’;
‘is_dominant’ must be changed if ‘is_fitter’ is randomized (the result is uncertain).

The idea of several, different scenarios is the following:

`a == b` In this case, fitness a cannot be distinguished from fitness b.

`a != b` In this case, fitness a is distinguishable from fitness b.

`a > b` In this case, fitness a is fitter than fitness b. (may not always be the case, see lexicographic)

`a >= b` In this case, fitness a is fitter or not distinguishable from fitness b.

`a < b` In this case, fitness b is fitter than fitness a, respectively. (may not always be the case, see lexicographic)

`a <= b` In this case, fitness b is fitter or not distinguishable from fitness a, respectively.

`a >> b` In this case, fitness a dominates fitness b which is a certain case.

`a << b` In this case, fitness a is dominated by fitness b, accordingly.

4.2 Multi-Objective Evolutionary Algorithm

The problem becomes more interesting in case that there exist more than one characteristic that should be compared in
order to decide which individual is “better”. It is very important to find rules that describe characteristics with respect
to a property of interest. The MOEA approach, a method of combining the traditional genetic algorithm (TGA) with
the multi-objective method, can consider the relation between the parameters and the objective spaces in the same
time then explore the optimum solution. Our multi-objective evolutionary algorithm uses a ‘helper’ function which
can decide the best individual when there are two comparable characteristics.

This special Multi-Objective scenario can be illustrated with an airplaine ticket purchase. Let us consider the example
of buying a flight ticket where the price of ticket and travel time are the decision-making criteria.

9

The Extended Selfish Gene, Release 1.0

The points A,B,C,D,E and F represent the options for flying between two cities. We assume that difference in travel
time is due to the waiting time for connecting flight at transit. Option A is the most expensive with ticket price of
$4000, but with least travel time of 16 hours. The cheapest ticket is of $2000 with travel time of 32 hours if one takes
flying Option E. Here the decision-making process of flight booking is not a single objective of either price or travel
time. The traveler has few options to choose from with some trade-off between travel time and price. If one selects
Option B instead of Option A, he will be saving on his ticket price by spending more time on transit. Again, if the
traveler selects Option D instead of Option E, he has to sell out more money for buying the ticket, but he can save
a few hours. If someone chooses Option F, he is definitely losing. He can go for Option B at same price with less
travel time, or Option D of same travel duration at lower price. The points A,B,C,D and E are called Pareto Optimal
Points, named after the famous Italian economist Vilfredo Pareto. They are also called Non-Dominated solutions.
The example of flight options is for a two-objective optimization. In multi-objective optimization there can be more
than two objectives.

10 Chapter 4. Fitness Function

CHAPTER

FIVE

ALLELE

5.1 Base Allele class

sgx.allele.base

class sgx.allele.base.Allele
Abstract class for Allele.

An allele must be Hashable (ie. non modifiable)

abstract describe()→ str
Pretty describes the current allele.

property mode
Returns the most frequent allele.

property possible_values
Possible values of the allele. None if not reasonably applicable (eg. a float)

abstract sample(sample_type: Optional[str] = 'sample')→ Hashable
Sample.

Parameters sample_type – ‘sample’ (default): random value according to the current prob-
ability distribution ‘uniform’: random value according to a uniform probability distribution
(ie. completely random) ‘mode’: most common value according to the current probability
distribution

abstract update(winner: Hashable, loser: Hashable)→ None
Updates the winner and the loser Genotype, so as to modify the new Learning Rate.

Parameters

• winner – The genotype of the better solution.

• loser – The genotype of the worse solution.

11

The Extended Selfish Gene, Release 1.0

5.2 Boolean Allele class

sgx.allele.boolean

class sgx.allele.boolean.Boolean(learning_rate: float = 0.001)

describe()→ str
Pretty describes the current boolean allele.

is_valid(value: Hashable)→ bool
Checks if the allele is boolean.

run_paranoia_checks()→ bool
Returns True, if all tests are passed.

sample(sample_type: Optional[str] = 'sample')→ Hashable
Sample.

Parameters sample_type – The type of sample (sample (default), uniform, mode).

static sigmoid(x: float, k: Optional[float] = 1)→ float
Logistic function with given logistic growth (k). See https://en.wikipedia.org/wiki/Logistic_function

Parameters

• x – A float number.

• k – Logistic Growth.

Returns The result probability of the sigmoid function.

update(winner: Hashable, loser: Hashable)→ None
Updates the winner and the loser Genotype, so as to modify the new Learning Rate.

Parameters

• winner – The genotype of the better solution.

• loser – The genotype of the worse solution.

5.3 Categorical Allele class

sgx.allele.categorical

class sgx.allele.categorical.Categorical(alternatives: Sequence[Hashable], weights: Op-
tional[Union[Sequence[float], dict]] = None,
learning_rate: Optional[float] = None)

describe()→ str
Pretty describes the current categorical allele.

is_valid(value: Hashable)→ bool
Checks if the allele is categorical.

property possible_values
Possible values of the allele. None if not reasonably applicable (eg. a float)

run_paranoia_checks()→ bool
Returns True, if all tests are passed.

12 Chapter 5. Allele

https://en.wikipedia.org/wiki/Logistic_function

The Extended Selfish Gene, Release 1.0

sample(sample_type: Optional[str] = 'sample')→ Hashable
Sample.

Parameters sample_type – The type of sample (sample (default), uniform, mode).

update(winner: Hashable, loser: Hashable)→ None
Updates the winner and the loser Genotype, so as to modify the new Learning Rate.

Parameters

• winner – The genotype of the better solution.

• loser – The genotype of the worse solution.

5.3. Categorical Allele class 13

The Extended Selfish Gene, Release 1.0

14 Chapter 5. Allele

CHAPTER

SIX

FITNESS

6.1 Base fitness class

sgx.fitness.base

class sgx.fitness.base.Fitness
Fitness of a phenotype, handle multiple formats (eg. scalar, tuple).

The class also redefines the relational operator in order to handle different types of optimization (eg. maximiza-
tion, minimization) and to provide limited support to more complex scenarios (eg. multi-objective optimization)

Equalities (‘==’ and ‘!=’) are based on is_distinguishable.

Single angular-bracket operators (‘>’, ‘<’, ‘>=’, and ‘<=’) are based on is_fitter and may be randomized
(the result may not be reproducible).

Double angular-bracket operators (‘>>’ and ‘<<’) are based on is_dominant and the result is stable. By
default is_dominant is defined as is_fitter.

When subclassing, one should only redefine is_fitter, and optionally is_distinguishable and
is_dominant; is_dominant must be changed if is_fitter is randomized (the result is uncertain).

Additional sanity checks should be added to check_comparable. Subclasses may redefine the decorate
method to change the values appearance.

__eq__(other: sgx.fitness.base.Fitness)→ bool
Returns True if one fitness is equal (==) to the other.

__ge__(other: sgx.fitness.base.Fitness)→ bool
Returns True if one fitness is greater or equal (>=) to the other.

__gt__(other: sgx.fitness.base.Fitness)→ bool
Returns True if one fitness is greater (>) than the other.

__le__(other: sgx.fitness.base.Fitness)→ bool
Returns True if one fitness is less or equal (<=) to the other.

__lshift__(other: sgx.fitness.base.Fitness)→ bool
Returns True if one fitness does not dominates (<<) the other.

__lt__(other: sgx.fitness.base.Fitness)→ bool
Returns True if one fitness is less (<) than the other.

__ne__(other: sgx.fitness.base.Fitness)→ bool
Returns True if one fitness is not equal (!=) to the other.

__rshift__(other: sgx.fitness.base.Fitness)→ bool
Returns True if one fitness dominates (>>) the other.

15

The Extended Selfish Gene, Release 1.0

check_comparable(other: sgx.fitness.base.Fitness)
Checks if the fitness is able to be compared.

decorate()→ str
Represent the individual fitness value with a nice string.

is_distinguishable(other: sgx.fitness.base.Fitness)→ bool
Check whether some differences from the other Fitness may be perceived.

is_dominant(other: sgx.fitness.base.Fitness)→ bool
Check whether dominates the other (result is certain).

is_fitter(other: sgx.fitness.base.Fitness)→ bool
Check whether fitter than the other (result may be accidental).

is_valid(fitness: sgx.fitness.base.Fitness)→ bool
Returns True if the fitness is able to be compared, otherwise Raises an Assertion Error.

run_paranoia_checks()→ bool
Returns True if checks are successful.

sgx.fitness.base.reversed(fitness_class: sgx.fitness.base.Fitness)→ sgx.fitness.base.Fitness
Reverse fitness class turning a maximization problem into a minimization one.

6.2 Fitness Function class

sgx.fitness.function

6.3 Multi-Objective class

sgx.fitness.multi_objective

class sgx.fitness.multi_objective.Lexicase(value: Sequence, fitness_type:
Type[sgx.fitness.base.Fitness] = <class
'sgx.fitness.simple.Scalar'>, **kwargs)

Pseudo-MO through Lexicase selection (DOI:10.1109/TEVC.2014.2362729).

is_fitter(other: sgx.fitness.multi_objective.Lexicase)→ bool
Check whether fitter than the other.

class sgx.fitness.multi_objective.MultiObjective(value: Sequence, fitness_type:
Type[sgx.fitness.base.Fitness] =
<class 'sgx.fitness.simple.Scalar'>,
**kwargs)

Abstract class for handling Multi-Objective problems.

is_dominant(other: sgx.fitness.multi_objective.Lexicase)→ bool
Check whether dominates the other (result is certain).

abstract is_fitter(other: sgx.fitness.multi_objective.Lexicase)→ bool
Check whether fitter than the other.

16 Chapter 6. Fitness

The Extended Selfish Gene, Release 1.0

6.4 Simple class

sgx.fitness.simple

class sgx.fitness.simple.Approximate(argument, rel_tol: float = 1e-09, abs_tol: float = 0)
A single, floating-point value with approximate equality – Larger is better.

check_comparable(other: sgx.fitness.simple.Approximate)
Checks if the fitness is able to be compared.

decorate()→ str
Represent the individual fitness value with a nice string.

is_distinguishable(other: sgx.fitness.base.Fitness)→ bool
Check whether some differences from the other Fitness may be perceived.

is_fitter(other: sgx.fitness.base.Fitness)→ bool
Check whether fitter than the other.

class sgx.fitness.simple.Integer
A single numeric value – Larger is better.

class sgx.fitness.simple.Scalar(x=0, /)
A single numeric value – Larger is better.

class sgx.fitness.simple.Vector(value: Sequence, fitness_type: Type[sgx.fitness.base.Fitness] =
<class 'sgx.fitness.simple.Scalar'>, **kwargs)

A generic vector of Fitness values.

fitness_type is the subtype, **kwargs are passed to fitness init

Examples

f1 = sgx.fitness.Vector([23, 10], fitness_type=Approximate, abs_tol=.1) f2 = sgx.fitness.Vector([23, 10], fit-
ness_type=Approximate, abs_tol=.001)

f1 > sgx.fitness.Vector([23, 9.99], fitness_type=Approximate, abs_tol=.1) is False f2 > sgx.fitness.Vector([23,
9.99], fitness_type=Approximate, abs_tol=.001) is True

check_comparable(other: sgx.fitness.simple.Vector)
Checks if the fitness is able to be compared.

static compare_vectors(v1: Sequence[sgx.fitness.base.Fitness], v2: Se-
quence[sgx.fitness.base.Fitness])→ int

Compare Fitness values in v1 and v2.

Parameters

• v1 – The first fitness vector.

• v2 – The second fitness vector.

Returns -1 if v1 < v2; +1 if v1 > v2; 0 if v1 == v2

decorate()→ str
Represent the individual fitness value with a nice string.

is_distinguishable(other: sgx.fitness.simple.Vector)→ bool
Check whether some differences from the other Fitness may be perceived.

is_fitter(other: sgx.fitness.base.Fitness)→ bool
Check whether fitter than the other.

6.4. Simple class 17

The Extended Selfish Gene, Release 1.0

18 Chapter 6. Fitness

CHAPTER

SEVEN

UTILS

7.1 CPU_time

sgx.utils.cpu_time

7.2 Jupyter Support

sgx.utils.jupyter_support

sgx.utils.jupyter_support.is_notebook()→ bool
Check if running inside a notebooks

Credits: https://stackoverflow.com/questions/15411967/

7.3 Logging

sgx.utils.logging

sgx.utils.logging.log_cpu(level: int = 20, msg: str = '', *args, **kwargs)→ None
Like log(), but including cpu time.

7.4 Random class

sgx.utils.random

7.5 Archive class

sgx.archive

19

https://stackoverflow.com/questions/15411967/

The Extended Selfish Gene, Release 1.0

7.6 Base class

sgx.base

class sgx.base.Genome(*args)
A tuple of Alleles, each one specifying a set of alternative genes.

is_valid(genotype: sgx.base.Genotype)→ bool
Check an object against a specification.

The function may be used to check a value against a parameter definition, a node against a section defini-
tion).

Returns True if the object is valid, False otherwise.

run_paranoia_checks()→ bool
Check the internal consistency of a “paranoid” object.

The function should be overridden by the sub-classes to implement the required, specific checks. It always
returns True, but throws an exception whenever an inconsistency is detected.

Notez bien: Sanity checks may be computationally intensive, paranoia checks are not supposed to be
used in production environments (i.e., when -O is used for compiling). Their typical usage is: assert
foo.run_paranoia_checks()

Returns True (always)

Raises AssertionError if some internal data structure is
incoherent –

class sgx.base.Genotype(*args)
A tuple containing the organism’s actual genes (their values).

run_paranoia_checks()→ bool
Check the internal consistency of a “paranoid” object.

The function should be overridden by the sub-classes to implement the required, specific checks. It always
returns True, but throws an exception whenever an inconsistency is detected.

Notez bien: Sanity checks may be computationally intensive, paranoia checks are not supposed to be
used in production environments (i.e., when -O is used for compiling). Their typical usage is: assert
foo.run_paranoia_checks()

Returns True (always)

Raises AssertionError if some internal data structure is
incoherent –

class sgx.base.Paranoid
Abstract class: Paranoid classes do implement run_paranoia_checks().

run_paranoia_checks()→ bool
Check the internal consistency of a “paranoid” object.

The function should be overridden by the sub-classes to implement the required, specific checks. It always
returns True, but throws an exception whenever an inconsistency is detected.

Notez bien: Sanity checks may be computationally intensive, paranoia checks are not supposed to be
used in production environments (i.e., when -O is used for compiling). Their typical usage is: assert
foo.run_paranoia_checks()

Returns True (always)

20 Chapter 7. Utils

The Extended Selfish Gene, Release 1.0

Raises AssertionError if some internal data structure is
incoherent –

class sgx.base.Pedantic
Abstract class: Pedantic classes do implement is_valid().

abstract is_valid(obj: Any)→ bool
Check an object against a specification.

The function may be used to check a value against a parameter definition, a node against a section defini-
tion).

Returns True if the object is valid, False otherwise.

7.7 Species class

sgx.species

class sgx.species.Species(genome: Sequence[Any], fitness_function:
sgx.fitness.function.FitnessFunction, mutation_rate: Optional[float] =
None)

Missing

evaluate(genotype: sgx.base.Genotype)→ sgx.fitness.base.Fitness
Evaluates a genotype according to a specific Fitness Function.

Parameters genotype – The Genotype which is going to be evaluated.

Returns The fitness calculated from a Fitness Function.

sample(sample_type: Optional[str] = 'sample')→ sgx.base.Genotype
Sampling the genotypes with a specific method.

Parameters sample_type – The type of sampling is going to be used.

Returns The candidate’s Genotype after sampling.

update(winner: sgx.base.Genotype, loser: sgx.base.Genotype)
Updates the winner and the loser Genotype, so as to modify the new Learning Rate.

Parameters

• winner – The genotype of the better solution.

• loser – The genotype of the worse solution.

7.7. Species class 21

The Extended Selfish Gene, Release 1.0

22 Chapter 7. Utils

CHAPTER

EIGHT

SGX ALGORITHM

8.1 Simple Algorithm class

sgx.algorithms.simple

23

The Extended Selfish Gene, Release 1.0

24 Chapter 8. SGX Algorithm

CHAPTER

NINE

MODULAR DESIGN RATIONALE

. . . ?

25

The Extended Selfish Gene, Release 1.0

26 Chapter 9. Modular Design Rationale

CHAPTER

TEN

AUTHORS

10.1 Giovanni Squillero

Politecnico di Torino
Department of Control and Computer Engineering
Corso Duca degli Abruzzi 24
10129 Torino — Italy
E-mail: giovanni.squillero@polito.it

10.2 Alberto Tonda

Génie et Microbiologie des Procédés Alimentaires (GMPA)
French National Institute for Agricultural Research
AgroParisTech, Université Paris - Saclay
1 av. Brétignières
78850 Thiverval-Grignon — France
E-mail: alberto.tonda@inrae.fr

10.3 Stella Stakiadi

Politecnico di Torino
Department of Control and Computer Engineering
Corso Duca degli Abruzzi 24
10129 Torino — Italy
E-mail: stellastak@gmail.com

27

mailto:giovanni.squillero@polito.it
mailto:alberto.tonda@inrae.fr
mailto:stellastak@gmail.com

The Extended Selfish Gene, Release 1.0

28 Chapter 10. Authors

CHAPTER

ELEVEN

LICENSE

Copyright © 2021 Giovanni Squillero

The Extended Selfish Gene (SGX) is free and open-source software , and it is distributed under the permissive Apache
License 2.0.

29

https://en.wikipedia.org/wiki/Free_and_open-source_software
https://tldrlegal.com/license/apache-license-2.0-(apache-2.0)
https://tldrlegal.com/license/apache-license-2.0-(apache-2.0)

The Extended Selfish Gene, Release 1.0

30 Chapter 11. License

CHAPTER

TWELVE

ACKNOWLEDGEMENTS

This Documentation was built with Sphinx using a theme provided by Read the Docs.

31

http://sphinx-doc.org/
https://github.com/rtfd/sphinx_rtd_theme
https://readthedocs.org/

The Extended Selfish Gene, Release 1.0

32 Chapter 12. Acknowledgements

CHAPTER

THIRTEEN

APPENDIX - TERMS

`Allele`: An allele is one of two, or more, forms of a given gene variant. An allele is one of two, or more, versions of
the same gene at the same place on a chromosome.

`Locus`: A locus (plural loci) is a specific, fixed position on a chromosome where a particular gene or genetic marker
is located. Each chromosome carries many genes, with each gene occupying a different position or locus;

`Gene`: A gene is a basic unit of heredity and a sequence of nucleotides in DNA or RNA that encodes the synthesis
of a gene product, either RNA or protein.

`Genome`: A genome is all genetic material of an organism. It consists of DNA (or RNA in RNA viruses). The
genome includes both the genes (the coding regions) and the noncoding DNA, as well as mitochondrial DNA and
chloroplast DNA.

`Genotype`: A genotype is an organism’s complete set of genetic material. Often though, genotype is used to refer to
a single gene or set of genes, such as the genotype for eye color. The genes take part in determining the characteristics
that are observable (phenotype) in an organism, such as hair color, height, etc.

`Phenotype`: Phenotype is the term used in genetics for the composite observable characteristics or traits of an
organism. The term covers the organism’s morphology or physical form and structure, its developmental processes,
its biochemical and physiological properties, its behavior, and the products of behavior.

`Individual`: An individual is that which exists as a distinct entity (see Population).

`Population`: A population is defined as a group of individuals of the same species living and interbreeding within a
given area.

33

The Extended Selfish Gene, Release 1.0

34 Chapter 13. Appendix - Terms

PYTHON MODULE INDEX

s
sgx.allele.base, 11
sgx.allele.boolean, 12
sgx.allele.categorical, 12
sgx.base, 20
sgx.fitness.base, 15
sgx.fitness.multi_objective, 16
sgx.fitness.simple, 17
sgx.species, 21
sgx.utils.cpu_time, 19
sgx.utils.jupyter_support, 19
sgx.utils.logging, 19
sgx.utils.random, 19

35

The Extended Selfish Gene, Release 1.0

36 Python Module Index

INDEX

Symbols
__eq__() (sgx.fitness.base.Fitness method), 15
__ge__() (sgx.fitness.base.Fitness method), 15
__gt__() (sgx.fitness.base.Fitness method), 15
__le__() (sgx.fitness.base.Fitness method), 15
__lshift__() (sgx.fitness.base.Fitness method), 15
__lt__() (sgx.fitness.base.Fitness method), 15
__ne__() (sgx.fitness.base.Fitness method), 15
__rshift__() (sgx.fitness.base.Fitness method), 15

A
Allele (class in sgx.allele.base), 11
Approximate (class in sgx.fitness.simple), 17

B
Boolean (class in sgx.allele.boolean), 12

C
Categorical (class in sgx.allele.categorical), 12
check_comparable() (sgx.fitness.base.Fitness

method), 15
check_comparable()

(sgx.fitness.simple.Approximate method),
17

check_comparable() (sgx.fitness.simple.Vector
method), 17

compare_vectors() (sgx.fitness.simple.Vector static
method), 17

D
decorate() (sgx.fitness.base.Fitness method), 16
decorate() (sgx.fitness.simple.Approximate method),

17
decorate() (sgx.fitness.simple.Vector method), 17
describe() (sgx.allele.base.Allele method), 11
describe() (sgx.allele.boolean.Boolean method), 12
describe() (sgx.allele.categorical.Categorical

method), 12

E
evaluate() (sgx.species.Species method), 21

F
Fitness (class in sgx.fitness.base), 15

G
Genome (class in sgx.base), 20
Genotype (class in sgx.base), 20

I
Integer (class in sgx.fitness.simple), 17
is_distinguishable() (sgx.fitness.base.Fitness

method), 16
is_distinguishable()

(sgx.fitness.simple.Approximate method),
17

is_distinguishable() (sgx.fitness.simple.Vector
method), 17

is_dominant() (sgx.fitness.base.Fitness method), 16
is_dominant() (sgx.fitness.multi_objective.MultiObjective

method), 16
is_fitter() (sgx.fitness.base.Fitness method), 16
is_fitter() (sgx.fitness.multi_objective.Lexicase

method), 16
is_fitter() (sgx.fitness.multi_objective.MultiObjective

method), 16
is_fitter() (sgx.fitness.simple.Approximate

method), 17
is_fitter() (sgx.fitness.simple.Vector method), 17
is_notebook() (in module sgx.utils.jupyter_support),

19
is_valid() (sgx.allele.boolean.Boolean method), 12
is_valid() (sgx.allele.categorical.Categorical

method), 12
is_valid() (sgx.base.Genome method), 20
is_valid() (sgx.base.Pedantic method), 21
is_valid() (sgx.fitness.base.Fitness method), 16

L
Lexicase (class in sgx.fitness.multi_objective), 16
log_cpu() (in module sgx.utils.logging), 19

M
mode() (sgx.allele.base.Allele property), 11

37

The Extended Selfish Gene, Release 1.0

module
sgx.allele.base, 11
sgx.allele.boolean, 12
sgx.allele.categorical, 12
sgx.base, 20
sgx.fitness.base, 15
sgx.fitness.multi_objective, 16
sgx.fitness.simple, 17
sgx.species, 21
sgx.utils.cpu_time, 19
sgx.utils.jupyter_support, 19
sgx.utils.logging, 19
sgx.utils.random, 19

MultiObjective (class in
sgx.fitness.multi_objective), 16

P
Paranoid (class in sgx.base), 20
Pedantic (class in sgx.base), 21
possible_values() (sgx.allele.base.Allele prop-

erty), 11
possible_values()

(sgx.allele.categorical.Categorical property),
12

R
reversed() (in module sgx.fitness.base), 16
run_paranoia_checks()

(sgx.allele.boolean.Boolean method), 12
run_paranoia_checks()

(sgx.allele.categorical.Categorical method), 12
run_paranoia_checks() (sgx.base.Genome

method), 20
run_paranoia_checks() (sgx.base.Genotype

method), 20
run_paranoia_checks() (sgx.base.Paranoid

method), 20
run_paranoia_checks() (sgx.fitness.base.Fitness

method), 16

S
sample() (sgx.allele.base.Allele method), 11
sample() (sgx.allele.boolean.Boolean method), 12
sample() (sgx.allele.categorical.Categorical method),

12
sample() (sgx.species.Species method), 21
Scalar (class in sgx.fitness.simple), 17
sgx.allele.base

module, 11
sgx.allele.boolean

module, 12
sgx.allele.categorical

module, 12
sgx.base

module, 20
sgx.fitness.base

module, 15
sgx.fitness.multi_objective

module, 16
sgx.fitness.simple

module, 17
sgx.species

module, 21
sgx.utils.cpu_time

module, 19
sgx.utils.jupyter_support

module, 19
sgx.utils.logging

module, 19
sgx.utils.random

module, 19
sigmoid() (sgx.allele.boolean.Boolean static method),

12
Species (class in sgx.species), 21

U
update() (sgx.allele.base.Allele method), 11
update() (sgx.allele.boolean.Boolean method), 12
update() (sgx.allele.categorical.Categorical method),

13
update() (sgx.species.Species method), 21

V
Vector (class in sgx.fitness.simple), 17

38 Index

	What is SGX?
	Audience
	Installation
	Source Code
	Importance of FOSS

	Fitness Function
	How do we handle a different scenario
	Multi-Objective Evolutionary Algorithm

	Allele
	Base Allele class
	Boolean Allele class
	Categorical Allele class

	Fitness
	Base fitness class
	Fitness Function class
	Multi-Objective class
	Simple class

	Utils
	CPU_time
	Jupyter Support
	Logging
	Random class
	Archive class
	Base class
	Species class

	SGX Algorithm
	Simple Algorithm class

	Modular Design Rationale
	Authors
	Giovanni Squillero
	Alberto Tonda
	Stella Stakiadi

	License
	Acknowledgements
	Appendix - Terms
	Python Module Index
	Index

